
RobertNLP at the IWPT 2021 Shared Task:
Simple Enhanced UD Parsing for 17 Languages

Stefan GrünewaldF♦ Frederik Oertel♦ Annemarie Friedrich♦
FInstitut für Maschinelle Sprachverarbeitung, University of Stuttgart

♦Bosch Center for Artificial Intelligence, Renningen, Germany
stefan.gruenewald|frederiktobias.oertel|annemarie.friedrich

@de.bosch.com

Abstract

This paper presents our multilingual depen-
dency parsing system as used in the IWPT
2021 Shared Task on Parsing into Enhanced
Universal Dependencies. Our system consists
of an unfactorized biaffine classifier that op-
erates directly on fine-tuned XLM-R embed-
dings and generates enhanced UD graphs by
predicting the best dependency label (or ab-
sence of a dependency) for each pair of tokens.
To avoid sparsity issues resulting from lexi-
calized dependency labels, we replace lexical
items in relations with placeholders at training
and prediction time, later retrieving them from
the parse via a hybrid rule-based/machine-
learning system. In addition, we utilize model
ensembling at prediction time. Our system
achieves high parsing accuracy on the blind
test data, ranking 3rd out of 9 with an average
ELAS F1 score of 86.97.

1 Introduction

Enhanced Universal Dependencies (Schuster and
Manning, 2016) are an extension of the widely
used Universal Dependencies (UD) framework
for syntactic dependency annotation (de Marneffe
et al., 2014). To better model linguistic phenomena
such as coordination, raising/control, and relative
clauses, enhanced UD extends basic UD trees by
including additional dependencies between tokens
in order to make relations between content words
more explicit. While there is evidence for the utility
of enhanced dependencies in downstream applica-
tions (Schuster et al., 2017), adding them means
that dependency structures are not constrained to
trees any more, which makes parsing them a differ-
ent problem with its own set of challenges.

In the past, research on enhanced UD parsing
has mostly focused on rule-based methods for ex-
tracting enhanced graphs from existing basic trees
(Nyblom et al., 2013; Simi and Montemagni, 2018;

Submission Score

1. TGIF 89.24
2. ShanghaiTech 87.07
3. RobertNLP 86.97

Median 83.64

Table 1: Overview of IWPT 2021 results (avg.
ELAS F1 score). Full results can be found
at https://universaldependencies.org/

iwpt21/results.html.

Nivre et al., 2018). Furthermore, only a relatively
small number of UD treebanks is annotated with en-
hanced dependencies. Recently, however, interest
in enhanced UD has increased, most notably with
the IWPT 2020 Shared Task (Bouma et al., 2020),
which asked contestants to produce enhanced UD
graphs from raw text for 17 languages.

For our submission to the 2021 edition of
the Shared Task (Bouma et al., 2021), we
adapt our English-only submission from last year
(Grünewald and Friedrich, 2020) to all 17 lan-
guages that are part of the competition. The core
principles of our system remain the same:

• We do not rely on basic dependencies for
creating enhanced graphs. Instead, we di-
rectly parse from raw tokens into enhanced
UD graphs.

• We use an unfactorized biaffine classifier ar-
chitecture which predicts the most likely de-
pendency label (or absence of a dependency)
for each pair of tokens in the sentence, form-
ing a dependency graph from the union of
these predictions.

• Inputs to the biaffine classifier are extracted
directly from a fine-tuned transformer-based
language model.

https://universaldependencies.org/iwpt21/results.html
https://universaldependencies.org/iwpt21/results.html

Instead of a strictly rule-based system as used by
Grünewald and Friedrich (2020), we use a hybrid
rule-based/machine-learning system to retrieve lex-
ical material for dependency labels at prediction
time (see Sec. 2.5). In order to further increase our
parser’s accuracy as well as its robustness across
treebanks, we use model ensembling.

As shown in Table 1, our system achieves high
parsing accuracy, ranking 3rd out of 9 with an aver-
age ELAS score of 86.97.

2 Our Model

This section describes the components of our parser
as submitted to the Shared Task.

2.1 Pre-processing

For tokenization and sentence segmentation, we
employ Trankitlarge (Nguyen et al., 2021), which
achieves state-of-the-art (or near state-of-the-art)
results for these tasks on the languages present in
the Shared Task. We use the default model for each
language.

2.2 Input Token Representation

We use the transformer-based, multilingual
XLM-Rlarge language model (Conneau et al., 2020)
to generate contextualized word embeddings for
the tokens of the input sentence, fine-tuning the
model while training our parser. We create the
wordpiece-tokenized input for XLM-R by feeding
each token into the XLM-R tokenizer. In addition,
we prepend a special [root] token to each sentence,
which serves as an artificial head of the root rela-
tion that must be present in every sentence. This
token receives a fixed, learned embedding instead
of a contextualized XLM-R embedding, but with
the same number of dimensions.

The final embedding ri for a token at position i is
extracted by forming a weighted sum of the internal
XLM-R layers at the position corresponding to the
first wordpiece of the original token. Following
Kondratyuk and Straka (2019), coefficients for this
weighted sum are learned during training, while
randomly dropping layers to prevent the model
from focusing on only a single layer.

2.3 Dependency Classification

Figure 1 shows an overview of our neural-network
based dependency classifier, which predicts rela-
tion labels (or absence of a relation) between pairs
of tokens.

Label scores

insteadcinnamon

...

UseInput tokens

XLM-R

hihead

Embeddings ri

objPredicted label

(Scalar mixture
of layers)

hidep

Biaff.

Figure 1: Architecture of neural network predicting de-
pendency relations between pairs of tokens.

Classifier architecture. Our dependency classi-
fier follows the architecture proposed by Dozat and
Manning (2018), which is capable of producing
general (bi-lexical) dependency graph structures.
The approach works by creating, for each input
token embedding ri, a head representation hhead

i

and a dependent representation hdep
i via two single-

layer feedforward neural networks:

hhead
i = FNNhead(ri) (1)

hdep
i = FNNdep(ri) (2)

For each ordered pair (i, j) of tokens in the sen-
tence, their respective head and dependent repre-
sentations are then fed to a biaffine classifier (Eq.
3, Dozat and Manning, 2017), which outputs logits
si,j over the possible dependency labels.1

We encode the absence of a dependency relation
between two tokens as simply another label (∅).
This “unfactorized” approach is in contrast to a
“factorized” approach that first predicts presence or
absence of relations and then uses a second classi-
fier to predict labels. Dozat and Manning (2018)
found that the unfactorized approach performed on
par with the factorized approach for semantic de-
pendency parsing, and this finding has been shown
to also apply to enhanced UD parsing (Grünewald
et al., 2021).

Finally, we can extract a probability distribution

1Note that this means that each pair of tokens is fed to the
classifier twice as an ordered pair, once with i as the potential
head and j as the potential dependent, and once the other way
around.

P (yi,j) over dependency labels from the logits:

Biaff(x1,x2) = x>1 Ux2 +W (x1 ⊕ x2) + b (3)

si,j = Biaff
(
hhead
i ,hdep

j

)
(4)

P (yi,j) = softmax(si,j) (5)

U, W and b in (3) are learned parameters; ⊕
denotes the concatenation operation. The model is
trained to minimize cross entropy loss w. r. t. the
true dependency label between each pair of tokens.

De-lexicalizing dependency labels. Because en-
hanced UD adds lexical information to certain de-
pendencies (e.g., obl:instead_of), the number of
possible dependency labels is very large for most
treebanks, with up to over 1100 for Arabic-PADT.
Among the languages being part of the Shared
Task, French is an exception as its treebanks do
not make use of lexicalized labels. To avoid spar-
sity issues, we strip lexical information from la-
bels during training, instead replacing them with
placeholders (e.g., obl:[case]) indicating where
in the dependency graph the lexical information
is expected to be found (see Sec. 2.5 for a de-
tailed description of the reconstruction process).
This way, we can remove all lexicalized relations
from the label vocabulary, instead adding only a
much smaller number of placeholder labels. The
basic relation types affected by this process are
nmod, obl, acl, advcl, and conj. We keep all
other, non-lexicalized subtype labels, including
those that occur together with lexical material (e.g.,
obl:järgi:gen becomes obl:[case]:gen). Our proce-
dure reduces label counts substantially, e.g., to 59
for Arabic.

2.4 Assembling the Dependency Graph

The outputs P (yi,j) provided by the dependency
classifier can be regarded as a 3-dimensional ten-
sor, with one dimension corresponding to the to-
kens as heads, one dimension corresponding to
the tokens as dependents, and the third dimension
corresponding to the label set. Figure 2 gives a
two-dimensional view of this tensor, with each cell
containing the highest-scoring label for a head (row
label) and dependent (column label) pair.

Ensembling. Instead of continuing directly with
the predicted matrices as described above, we train
multiple models with different initializations for
each language and then ensemble them by averag-
ing their output probabilities during prediction. In

other words, we compute the probabilities of labels
P (yi,j) between two ordered tokens i and j as

P (yi,j) =
1

m

m∑
k=1

softmax(s(k)i,j) (6)

where m is the number of models and s
(k)
i,j is the

unnormalized output vector of the k-th model for
the token pair (i, j).

For languages for which more than one training
treebank is available, we ensemble models trained
on different treebanks. For more details on this
procedure, see section Sec. 3.1.

Ensuring graph structure constraints. Using
the output tensors created via ensembling, we can
assemble a dependency graph by retrieving the
highest-scoring dependency (or ∅, i.e., no relation)
for each pair of tokens in the sentence and form-
ing their union (omitting the diagonal as enhanced
UD does not allow links starting and ending at the
same node). Although enhanced UD eliminates the
requirement that dependency graphs must be trees,
it maintains the structural constraint that every to-
ken must be reachable from the root of the graph.2

Although our system learns to produce graphs that
obey this constraint in the vast majority of cases,
there are cases where structurally invalid graphs are
retrieved. To make these graphs structurally valid,
we perform the following heuristic post-processing
steps:

1. If the graph has more than one root, we re-
move all but the most confidently predicted
root dependency.

2. If there are one or more nodes in the graph
that are not reachable from the root, we select
the most confidently predicted non-∅ edge
from a reachable to an unreachable node and
add it to the graph. We repeat this step until
every node is reachable from the root.

Removal of superfluous dependencies. UD
contains several relations that empirically only ap-
pear on their own, i.e., whose dependent may have
only one incoming edge of this type. These rela-
tions are fixed, flat, goeswith, punct, and cc. If our
parser erroneously predicts several of these rela-
tions for a single token (e.g., punctuation being

2Graphs in enhanced UD may have more than one root, but
empirically, the vast majority have only one root. Therefore,
we assume exactly one root for each dependency graph for
simplicity.

[r
oo

t]

U
se

ci
nn

am
on

in
st

ea
d

of su
ga

r

or sw
ee

te
ne

r

[root] ∅ root ∅ ∅ ∅ ∅ ∅ ∅

Use ∅ ∅ obj ∅ ∅ obl:[case] ∅ obl:[case]

cinnamon ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

instead ∅ ∅ ∅ ∅ fixed ∅ ∅ ∅

of ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

sugar ∅ ∅ ∅ case ∅ ∅ ∅ conj:[cc]

or ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

sweetener ∅ ∅ ∅ ∅ ∅ ∅ cc ∅

Figure 2: Prediction matrix of the dependency classi-
fier. Cell entries show the highest-scoring label for each
ordered pair of tokens, with row/column labels indicat-
ing potential heads/dependents respectively.

Use cinnamon instead of sugar or sweetener

root

obj

obl:instead_of
case

fixed
conj:or

cc

obl:instead_of

Figure 3: Dependency graph with lexicalized labels.

attached to several tokens at once), we remove all
but the most confidently predicted dependency.

2.5 Label Lexicalization

As outlined in Sec. 2.3, lexical information is
stripped from dependency labels during training,
using the format base:[placeholder]. At prediction
time, we re-lexicalize predicted placeholder labels
using a two-step procedure. First, lexical mate-
rial is retrieved from the dependency graph using a
rule-based heuristic, and then a machine-learning
classifier is run on the output to correct potential
errors.

Re-lexicalization heuristic. The main rule of
our re-lexicalization heuristic checks if the token
has a dependent that is attached via the placeholder
of the de-lexicalized relation in question. If so, we
lexicalize the relation with the token of this depen-
dent. For example, in Figure 3, our parser predicts
obl:[case] and we hence re-lexicalize this relation
with the token(s) of the case dependents of “sugar.”
(Multiword expressions, such as “instead of”, are
handled by concatenating word forms linked by the
fixed relation.) In addition, there is a number of
more fine-grained rules to handle lexicalization in
the context of specific constructions such as coor-
dination. More details are reported by Grünewald

Treebank Heuristic Hybrid

Arabic-PADT 93.4 97.5
Czech-PDT 90.9 99.2
English-EWT 98.4 98.8
Estonian-EDT 98.8 99.8
Latvian-LVTB 99.4 99.7
Polish-PDB 91.8 98.9
Slovak-SNK 93.0 98.0
Tamil-TTB 16.1 66.1

Table 2: Re-lexicalization accuracy (%) on a selection
of gold development treebanks.

and Friedrich (2020).
As can be seen in Table 2, the rule-based heuris-

tic achieves good results in the case of English –
the language that it was initially designed for – and
for a number of other languages (e.g. Estonian and
Latvian), with re-lexicalization accuracies greater
than 98 % when evaluating on the gold develop-
ment data. However, it performs markedly worse
for some of the other languages in the Shared Task,
such as Arabic, Czech and (especially) Tamil. The
main reason for this is that the heuristic can only
retrieve word forms directly from the raw sentence,
whereas the lexical material in gold dependency
labels is lemmatized.

Rule-based label transducer. To increase re-
lexicalization accuracy, we perform a second step
after running the heuristic on the initial parser out-
put, automatically learning a “label transducer”
for each language from treebank data. For each
language, we train a RandomForest classifier
(Breiman, 2001) that takes as input the lexicalized
labels predicted by our heuristic as well as a repre-
sentation of its sentential context. The label trans-
ducer then predicts a new label, which may differ
from the initial prediction made by the heuristic. In
other words, the label transducer functions as an
ML-based error correction mechanism.

The input features for the classifier are (a) a one-
hot encoding of the lexicalized label predicted by
the heuristic, e.g., conj:als; and (b) a binary en-
coding of all tokens in the graph that are at most
1 dependency edge away from the endpoint of the
relation in question. The output space is the set
of lexicalized dependency labels as present in the
gold training data.

In few cases, the label transducer predicts a dif-
ferent base relation type compared to the one given
as input, i.e., it may transform an input of conj:als
into an output of nmod:in. As we observed that

XLM-R embeddings
Embeddings dimension 1024
Token mask probability 0.15
Layer dropout 0.1
Hidden dropout 0.2
Attention dropout 0.2
Output dropout 0.5

Biaffine classifier
Hidden size 1024
Dropout 0.33

AdamW Optimizer
Batch size 32
LR schedule Noam
Warmup steps 1 epoch
Peak learning rate 4e−5

β1, β2 0.9, 0.999
Weight decay 0.0

Table 3: Basic hyperparameter values used in training.

such predictions are almost always incorrect, we
keep the heuristic’s output in these cases.

On the gold development data, we find that
including the ML-based transducer in the re-
lexicalization process leads to moderate to large
accuracy increases (see Table 2). This is the case
particularly for languages where lexical material in
dependencies often differs from the raw tokens in
the graph (e.g., Arabic and Tamil).

3 Experiments

This section describes our main submission, as well
as a number of additional experiments.

3.1 Experimental Settings

We use the provided training and development data
for training and validation, respectively. During
training, we use gold-segmented sentences and
gold tokenization.

For hyperparameter settings, we mostly stick
with the values of Grünewald and Friedrich (2020).
The exceptions are parameters related to the train-
ing process itself, where we use a batch size of 32 in
conjunction with an inverse square root (“Noam”)
learning rate schedule (Vaswani et al., 2017) that
reaches a peak LR of 4e−5 after one epoch of train-
ing. We found this configuration to yield results
comparable to our previous setup, but at noticeably
higher training efficiency. Table 3 shows the full
set of hyperparameters.

The above setup works robustly across lan-
guages, with Tamil being the only exception, reach-
ing only ca. 54 ELAS F1 on the development data.
For the low resource setting of parsing Tamil, we
hence use a batch size of 1, a lower learning rate

Language Ensemble composition

Czech 3xPDT, 1xCAC, 1xFictree
Dutch 3xAlpino, 2xLassySmall
English 3xEWT, 2xGUM
Estonian 4xEDT, 1xEWT
Polish 5xPDB

Table 4: Ensemble compositions for languages with
more than one training treebank.

(1e−5), as well as a longer warmup time (5 epochs)
and higher early stopping patience (40 epochs).

We train 5 models per language and ensemble
these models for our final predictions (see Sec. 2.4).
For languages with more than one training treebank,
we train models on all treebanks provided, with
more models trained on larger treebanks. The one
exception to this is Polish, where we found ensem-
bling of models trained on both the PDB and LFG
treebanks to yield worse results than just training
on PDB (likely due to systematic annotation differ-
ences). Table 4 shows the ensemble composition
for all languages with multiple training treebanks.

Each model is trained using a single nVidia Tesla
V100 GPU, stopping early when ELAS F1 score
on the development set does not improve for 20
epochs, or after at most 24 hours. Training time
varies substantially by treebank and correlates with
treebank size, with training being fastest for Tamil-
TTB (ca. 2 hours on average) and slowest for
Russian-SynTagRus and Czech-PDT (both run into
the 24-hour time limit).

3.2 Results of Submission

Table 5 shows the results (in terms of ELAS F1
score) on the blind test data for our main submis-
sion (rightmost column, ensemblehyb) as well as
the 1st- and 2nd-scoring submissions of the Shared
Task (TGIF and ShanghaiTech), as well as the me-
dian submission for each language. Our system
achieves an average ELAS F1 score of 86.97 %,
ranking 3rd with a margin of more than 3 points
over the median.

The best results achieved by our system are for
Bulgarian and Italian, each with ELAS F1 scores
of over 93. In contrast, Tamil is the language that
we perform by far the worst on, with an ELAS F1
score of around 59. In an extreme low-resource
scenario such as parsing Tamil (where the training
data consists of only 400 sentences), adaptions to
our framework will be necessary.

Other teams RobertNLP
Language TGIF Shanghai Median single ensembleheur ensemblehyb

Arabic 81.23 82.26 76.39 81.37 81.12 81.58
Bulgarian 93.63 92.52 90.84 92.94 92.91 93.16
Czech 92.24 91.78 89.08 89.99 89.51 90.21
Dutch 91.78 88.64 84.14 88.02 88.21 88.37
English 88.19 87.27 85.70 87.29 87.89 87.88
Estonian 88.38 86.66 84.02 86.10 86.52 86.55
Finnish 91.75 90.81 89.02 90.77 90.97 91.01
French 91.63 88.40 87.32 88.59 88.51 88.51
Italian 93.31 92.88 91.81 93.00 93.16 93.28
Latvian 90.23 89.17 84.57 88.68 88.80 88.82
Lithuanian 86.06 80.87 78.04 80.98 80.76 80.76
Polish 91.46 90.66 88.31 89.49 89.54 89.78
Russian 94.01 93.59 90.90 92.55 92.33 92.64
Slovak 94.96 90.25 87.04 89.60 89.29 89.66
Swedish 89.90 86.62 84.91 87.72 88.02 88.03
Tamil 65.58 58.94 52.27 58.24 59.00 59.33
Ukrainian 92.78 88.94 86.92 88.56 88.86 88.86

Average 89.24 87.07 83.64 86.70 86.78 86.97

Table 5: Parsing results (ELAS F1) on blind test data in the IWPT 2021 Shared Task. ensemblehyb is our main
submission, using both the re-lexicalization heuristic and the label transducer.

3.3 Analysis of Results

To tease out the effects of re-lexicalization and
ensembling, we submitted two more experiments
on the blind test data after the official deadline.

Effect of re-lexicalization strategy. In a first ex-
periment, we did not use our machine learning-
based label transducer for re-lexicalization of la-
bels, instead relying only on the rule-based heuris-
tic. The results of this experiment can be found in
the column labelled “ensembleheur” in Table 5.

Using only the heuristic for label lexicalization
results in a modest, but noticeable accuracy hit
across languages, reducing the average ELAS F1
score by roughly 0.2. The languages most affected
are Czech (-0.70), Arabic (-0.46), Slovak (-0.35),
and Tamil (-0.33), in which differences between
lexical material in the sentence and their lemmas
included in lexicalized labels are frequent. In con-
trast, many languages see only small or no per-
formance drops (e.g. Lithuanian, Swedish); for
English, performance even increases very slightly
when removing the label transducer.

These results indicate that while using our hy-
brid system is beneficial, good results for most lan-
guages can also be achieved when relying solely on
our re-lexicalization heuristic. This makes it con-
ceivable that in conjunction with a high-accuracy
lemmatizer, a purely rule-based system may per-
form on par with a hybrid system, and we view this
as an interesting avenue for future work.

Effect of ensembling. In a second experiment,
we did not perform model ensembling for predic-
tion, instead only using a single model for each
language. The column labelled “single” in Table 5
reports the best results achieved for each language
when using only the best single model.

As can be seen, utilizing only a single model
per language results in a moderate average per-
formance drop of 0.27 ELAS F1 points. With
the exception of French and Lithuanian, all lan-
guages benefit from model ensembling, with Tamil
(+1.09), English (+0.59), Estonian (+0.45), and
Dutch (+0.35) showing the strongest improvements.
As the latter three include data from different tree-
banks in their blind test sets, this indicates that
ensembling may also help parser robustness when
mixing models trained on different datasets.

However, although the overall effect of ensem-
bling is notable, our parser nonetheless retains a
relatively strong performance even without it, and
still would have scored 3rd in the Shared Task if it
was only using single models.

4 Conclusion

In this paper, we have described our submission
to the IWPT 2021 Shared Task, which ranked
3rd out of 9 with an average ELAS F1 score of
86.97. Our model is an extension of the previously
English-only system (Grünewald and Friedrich,
2020), demonstrating that the same approach is
also yields very good results for other languages

with only relatively minor modifications. In post-
submission ablation experiments, we find that our
parser benefits from model ensembling and a ma-
chine learning-assisted approach to label lexicaliza-
tion.

A remaining issue of our parser is its rather poor
performance in a low-resource setting (Tamil). Ad-
dressing this weakness, ideally while maintaining
the parser’s relatively simple core architecture, may
be a promising avenue for future work.

References
Gosse Bouma, Djamé Seddah, and Daniel Zeman.

2021. From raw text to enhanced universal depen-
dencies: The parsing shared task at iwpt 2021. In
Proceedings of the 17th International Conference on
Parsing Technologies (IWPT 2021), pages 146–157,
Bangkok, Thailand (online). Association for Compu-
tational Linguistics.

Gosse Bouma, Djamé Seddah, and Daniel Zeman.
2020. Overview of the IWPT 2020 shared task on
parsing into enhanced Universal Dependencies. In
Proceedings of the 16th International Conference
on Parsing Technologies and the IWPT 2020 Shared
Task on Parsing into Enhanced Universal Dependen-
cies, pages 151–161, Online. Association for Com-
putational Linguistics.

Leo Breiman. 2001. Random forests. Machine learn-
ing, 45(1):5–32.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. pages
8440–8451.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. Open-
Review.net.

Timothy Dozat and Christopher D. Manning. 2018.
Simpler but more accurate semantic dependency
parsing. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 2: Short Papers), pages 484–490, Mel-
bourne, Australia. Association for Computational
Linguistics.

Stefan Grünewald and Annemarie Friedrich. 2020.
RobertNLP at the IWPT 2020 shared task: Surpris-
ingly simple enhanced UD parsing for English. In
Proceedings of the 16th International Conference
on Parsing Technologies and the IWPT 2020 Shared
Task on Parsing into Enhanced Universal Dependen-
cies, pages 245–252, Online. Association for Com-
putational Linguistics.

Stefan Grünewald, Annemarie Friedrich, and Jonas
Kuhn. 2021. Applying Occam’s razor to
transformer-based dependency parsing: What works,
what doesn’t, and what is really necessary. In Pro-
ceedings of the 17th International Conference on
Parsing Technologies and the IWPT 2021 Shared
Task on Parsing into Enhanced Universal Dependen-
cies, Online. Association for Computational Linguis-
tics.

Dan Kondratyuk and Milan Straka. 2019. 75 lan-
guages, 1 model: Parsing universal dependencies
universally. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 2779–2795, Hong Kong, China. As-
sociation for Computational Linguistics.

Marie-Catherine de Marneffe, Timothy Dozat, Na-
talia Silveira, Katri Haverinen, Filip Ginter, Joakim
Nivre, and Christopher D. Manning. 2014. Uni-
versal Stanford dependencies: A cross-linguistic ty-
pology. In Proceedings of the Ninth International
Conference on Language Resources and Evalua-
tion (LREC’14), pages 4585–4592, Reykjavik, Ice-
land. European Language Resources Association
(ELRA).

Minh Van Nguyen, Viet Dac Lai, Amir Pouran
Ben Veyseh, and Thien Huu Nguyen. 2021. Trankit:
A light-weight transformer-based toolkit for multi-
lingual natural language processing. In Proceedings
of the 16th Conference of the European Chapter of
the Association for Computational Linguistics: Sys-
tem Demonstrations, pages 80–90, Online. Associa-
tion for Computational Linguistics.

Joakim Nivre, Paola Marongiu, Filip Ginter, Jenna
Kanerva, Simonetta Montemagni, Sebastian Schus-
ter, and Maria Simi. 2018. Enhancing universal
dependency treebanks: A case study. In Proceed-
ings of the Second Workshop on Universal Depen-
dencies (UDW 2018), pages 102–107, Brussels, Bel-
gium. Association for Computational Linguistics.

Jenna Nyblom, Samuel Kohonen, Katri Haverinen,
Tapio Salakoski, and Filip Ginter. 2013. Predict-
ing conjunct propagation and other extended Stan-
ford dependencies. In Proceedings of the Second In-
ternational Conference on Dependency Linguistics
(DepLing 2013), pages 252–261, Prague, Czech Re-
public. Charles University in Prague, Matfyzpress,
Prague, Czech Republic.

Sebastian Schuster, Éric Villemonte de La Clergerie,
Marie Candito, Benoît Sagot, Christopher Manning,
and Djamé Seddah. 2017. Paris and Stanford at EPE
2017: Downstream evaluation of graph-based depen-
dency representations. In Proceedings of the 2017
Shared Task on Extrinsic Parser Evaluation (EPE
2017), pages 47–59.

Sebastian Schuster and Christopher D. Manning. 2016.
Enhanced English Universal Dependencies: An im-

https://aclanthology.org/2021.iwpt-1.15
https://aclanthology.org/2021.iwpt-1.15
https://doi.org/10.18653/v1/2020.iwpt-1.16
https://doi.org/10.18653/v1/2020.iwpt-1.16
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
https://doi.org/10.18653/v1/P18-2077
https://doi.org/10.18653/v1/P18-2077
https://doi.org/10.18653/v1/2020.iwpt-1.26
https://doi.org/10.18653/v1/2020.iwpt-1.26
https://doi.org/10.18653/v1/D19-1279
https://doi.org/10.18653/v1/D19-1279
https://doi.org/10.18653/v1/D19-1279
http://www.lrec-conf.org/proceedings/lrec2014/pdf/1062_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/1062_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/1062_Paper.pdf
https://www.aclweb.org/anthology/2021.eacl-demos.10
https://www.aclweb.org/anthology/2021.eacl-demos.10
https://www.aclweb.org/anthology/2021.eacl-demos.10
https://doi.org/10.18653/v1/W18-6012
https://doi.org/10.18653/v1/W18-6012
https://www.aclweb.org/anthology/W13-3728
https://www.aclweb.org/anthology/W13-3728
https://www.aclweb.org/anthology/W13-3728
https://www.aclweb.org/anthology/L16-1376

proved representation for natural language under-
standing tasks. In Proceedings of the Tenth Inter-
national Conference on Language Resources and
Evaluation (LREC’16), pages 2371–2378, Portorož,
Slovenia. European Language Resources Associa-
tion (ELRA).

Maria Simi and Simonetta Montemagni. 2018. Boot-
strapping enhanced universal dependencies for Ital-
ian. In 5th Italian Conference on Computational
Linguistics, CLiC-it 2018, volume 2253. CEUR-
WS.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

https://www.aclweb.org/anthology/L16-1376
https://www.aclweb.org/anthology/L16-1376
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

