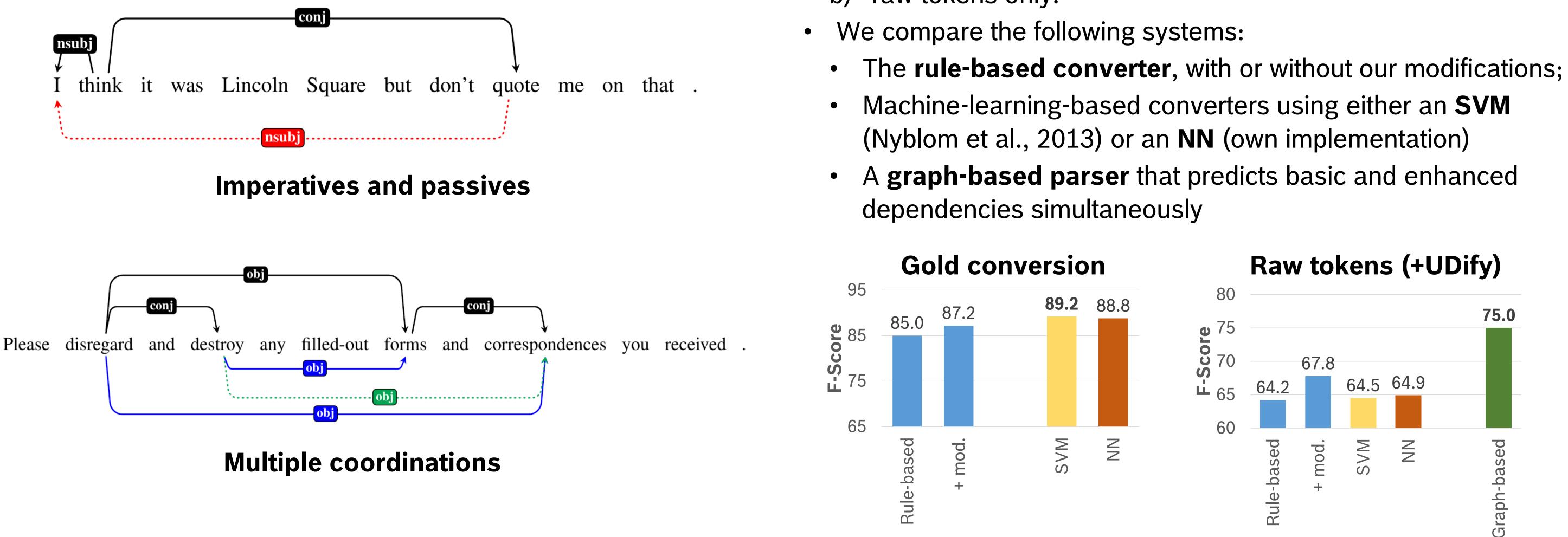
Coordination in English Enhanced UD: Analysis and Computational Modeling

Stefan Grünewald^{1,2}

Prisca Piccirilli²

¹Bosch Center for Artificial Intelligence

MOTIVATION:

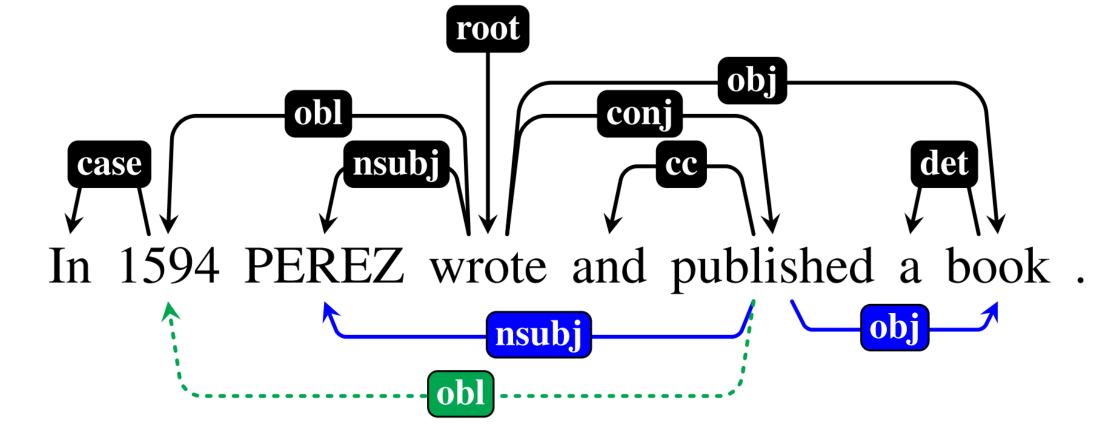

- Enhanced UD includes additional dependencies to propagate relations from the head of a conjunction to its other elements
- So far, English corpora such as EWT only contain enhanced links created via rule-based conversion (i.e., no human supervision)

CONTRIBUTIONS:

- We analyze and manually correct a large part of EWT w.r.t. conjunction propagation, identifying common converter errors
- Using our new dataset, we evaluate different methods of extracting propagated relations, finding that end-to-end enhanced parsing works best

Corpus Study: Analysis of Modifications

• In addition to our propagation of non-core dependents, we identify common error sources in the automatically generated enhanced annotations, including:


• We propose changes to Schuster & Manning's (2016) rule-based converter to take these phenomena into account

Annemarie Friedrich¹ ²University of Stuttgart, Germany

University of Stuttgart Germany

Black: basic layer **Blue:** enhanced layer **Green:** proposed addition

Computational Modeling of Coordinate Structures

- We evaluate different methods of extracting propagated dependency links from either
- a) gold-standard basic annotations, or
- b) raw tokens only.

- Machine learning models slightly outperform rule-based when extracting propagated dependencies from gold basic annotations
- On raw tokens, our graph-based parser achieves the best results

Corpus Study and Manual Corrections: English Web Treebank (EWT)

- Schuster & Manning (2016)
- coordinate structures by expert annotator
- **New:** We also propagate non-core dependents: *obl*, *advcl*, *advmod*

	conj. sent	edited
train	1,926	999
dev	222	222
test	196	196
total	2,344	1,417

Dataset statistics

Our modifications:

- Frequently added: nsubj, obl, nmod, advmod
- Frequently removed: nsubj:pass, nsubj

Contributions and Conclusion

- provided

Code and data are available on GitHub: github.com/boschresearch/coordinate_constructions_ english_enhanced_ud_eacl2021

EWT: Enhanced annotations created using rule-based converter by

We extract sentences containing **conjoined verb phrases** Modification/verification of enhanced links involved in (all)

	Α	В	С
Α	-	90.1	94.9
В	95.2	-	97.2
С	80.5	77.9	-

Inter-annotator agreement study: 100 sentences: precision/recall

• We present the **first manually validated dataset** for coordination propagation in English Enhanced UD This new dataset allows for a **principled comparison of** different methods for conjunction propagation ranging from rule-based pipelines to an end-to-end neural system • ML-based classifiers trained on original data work best to create enhanced graphs from basic trees

• A graph-based parser predicting basic and enhanced links simultaneously works best when only raw tokens are

References

Schuster & Manning (2016): Enhanced English Universal Dependencies: An Improved Representation for Natural Language Understanding Tasks. In: Proceedings of LREC 2016.

Nyblom et al. (2013): Predicting Conjunct Propagation and Other Extended Stanford Dependencies. In: Proceedings of DepLing 2013.