
Generalized Chart Constraints for
Efficient PCFG and TAG Parsing

Stefan Grünewald, Sophie Henning, and Alexander Koller
Department of Language Science and Technology, Saarland University

Overview

I Roark et al. (2012) show that chart constraints are a
simple and effective way to boost both efficiency and
accuracy of PCFG chart parsing.

I Use a tagger to predict at which string positions
multi-word constituents may begin or end.

I Use these predictions to close off chart cells for
disallowed spans:

The
B
E E

B
E
BB

E
B
E

sleepingold man was

B̄ = {1, 2, 4}
Ē = {0, 1, 3}

Chart constraints: Basic idea

I Contribution 1: We generalize chart constraints for use
with other grammar formalisms, such as TAG.

I Contribution 2: We combine chart constraints with other
pruning mechanisms and achieve speedups of up to 70x for
PCFG and 124x for TAG, with no loss in accuracy.

Generalized chart constraints

I For many grammar formalisms, the parsing process can be
expressed in terms of parsing schemata (Shieber at al.,
1995), e.g. in the case of PCFG:

[B , i , j ] [C , j , k] A → B C

[A, i , k]

I Given a parsing schema, chart constraints can be interpreted
as a set Q of allowable parse items:

[B , i , j ] [C , j , k] A → B C [A, i , k] ∈ Q

[A, i , k]

I Parse items [A, i , k] for PCFG encode that
the substring from i to k can be derived
from the nonterminal A.

I For a parse item to be allowable, the span
must obey the chart constraints:

i 6∈ B̄ ∧ k 6∈ Ē
i k

Allowable parse items for PCFG

I Parse items [X , i , j , k, l ] for TAG
additionally encode “gaps” (j , k) at which
auxiliary trees may be adjoined.

I These gaps must obey the chart
constraints as well:

i 6∈ B̄ ∧ j 6∈ B̄ ∧ k 6∈ Ē ∧ l 6∈ Ē

i

j k

l

Allowable parse items for TAG

Predicting chart constraints

I We predict the probabilities of
chart constraints at each
string position using a
two-layer bidirectional LSTM.

I A threshold parameter θ is
used to transform probabilities
into actual constraints:

i ∈ B̄ iff P(B̄ | x, i) > θ

I We achieve a precision of over
99 % with a recall of far over
90 % for both classes B̄ and Ē .

x1

v1

x2

v2

xn

vn
...

...

B E B E B E

Evaluation: PCFG parsing

I We evaluate chart constraints for PCFG in combination with
coarse-to-fine parsing (Charniak & Johnson, 2005;
Teichmann et al., 2017).

I We parse Section 23 of the Penn Treebank, using POS tags
as input.

Parser f-score time (ms) speedup
Unpruned 71.0 2599 1.0x
CC (θ = 0.5) 75.0 143 18.2x
CTF 67.6 194 13.4x
CTF + CC (θ = 0.5) 72.4 37 70.1x

Evaluation: TAG parsing

I We evaluate chart
constraints for TAG.

I Combine with neural
supertagger, which
predicts the k most likely
elementary trees for each
string position (cf.
Bangalore & Joshi, 1999;
Lewis et al., 2016).

I We convert the WSJ section of the Penn Treebank into a
TAG corpus, removing multiple adjunction, and parse Section
23 of the converted corpus.

Parser f-score time (ms) speedup
Unpruned 51.4 9483 1.0x
CC (θ = 0.95) 53.6 2489 3.8x
supertag (k = 3) 78.5 132 72.0x
. . . + B/E (0.95) 79.2 87 108.9x
. . . + CC (0.95) 78.4 76 124.3x

Open-source implementation

For our experiments, we used the Alto parser (Gontrum et al.,
2017) for Interpreted Regular Tree Grammars (IRTGs; Koller &
Kuhlmann, 2011).
We are about to make our code available open-source as part
of Alto, at http://bitbucket.org/tclup/alto/


